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LETTER TO THE EDITOR 

On large-order perturbation calculus for anharmonic 
potentials 

Andrzej Popielewicz 
Institut fur Theoretische Physik, Justus-Liebig-Universitat Giessen, Heinrich-Buff -Ring 
16, D-6300 Giessen, West Germany 

Received 4 January 1982 

Abstract. We rederive the formula determining the large-order coefficients in the perturba- 
tion expansion of the ground state energy for the general anharmonic potential. We show 
that the transition from the Borel summability to the Borel non-summability of the series, 
connected with the change of the symmetry of the potential and with the occurrence of 
the degenerate minima, may be described by a discontinuously varying exponent. 

The first analysis of the large behaviour of the perturbation calculus for the zero space 
dimension anharmonic oscillator was made by Bender and Wu (1973) who showed 
using semiclassical WKB methods that the series are divergent (in the usual sense). 
Then it was shown that useful information could be extracted even from divergent 
series by using some resummation method; divergent series can be convergent in 
another sense, for example in the Borel sense. Unfortunately, the Borel transforma- 
tion, which allows one to find the function with the same asymptotic expansion as the 
divergent series, requires knowledge of the large-order behaviour. Great progress in 
this direction was made in 1977 by Lipatov who proposed an approximate method 
of estimating the large-order behaviour applicable in any dimension. The method 
relies on the expansion of the functional integral representing the investigated quantity 
in any given order around the non-trivial saddle point. The Lipatov ideas were then 
developed in field theory by BrCzin er a1 (1977) and others. These developments 
showed the relation between the existence of special classical soliton-type solutions 
of the equations of motion for imaginary time, the large-order behaviour of the 
perturbation calculus and the existence of the Borel sum (Zinn-Justin 1981a, b, 
Marciano and Pagels 1978). For a special class of potentials in zero space dimensions 
(quantum mechanics) Zinn-Justin (198 la )  proposed an equivalent approach. 

We shall now rederive the general formula for the kth-order coefficient of the 
perturbative expansion for the ground state energy. Our final result is the same as 
that obtained by Zinn-Justin (1981a) or Brt5zin er a1 (1977); nevertheless the 
derivation proposed in this paper seems to be the simplest one. The potential u ( 4 )  
is an entire function of q, with the property 

u ( q )  = is2+ 0 ( q 3 )  (1) 
and we take it in the form A-’u(Aq) to obtain A expansions. We define the action A 
as 

1 6 

A =I 0 ( : ~ j ~ + ; i + v ( A q ) )  dt. 
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The ground state energy is given by the asymptotic expansion 
00 

(3) k Eo(g) = Ekg 
0 

where g = A’ or g = A depending whether A - 2 ~ ( A q )  is a function of A’ or of A. 
We shall calculate Eo(g) through 

Because the following formula is valid in the semiclassical limit (see Zinn-Justin 1981a) 

we have 

= zk, d o )  = d P ) ,  (6) 
with Tr e-PH = ~7 Zkg‘. 

Here the cut is assumed in the complex g plane along the negative or positive real 
axis and the sum is taken over the periodic orbits. We restrict ourselves to the periodic 
trajectories because they give the minimal classical action A,. It is a special case of 
the general behaviour which we meet in field theory, where one shows with the help 
of Sobolev inequalities that solutions with minimal action are spherically symmetric 
(see Zinn-Justin 1981a). 

The equation of motion has the form 

$ i2 ( t )  = u[r ( t ) ]+E,  r ( t )  = Aq,( t ) .  (7) 
Thus as usual the time interval P is equal to 

The classical action is given by 

1 ”  P 

A, = lo (f& ( t )  + A -’u ( A q , ) )  = g (1 [ 2 ( u  ( r )  + E)]”’ dr  - E@). 
x’ 

As shown by Zinn-Justin (1981a) the asymptotic form of E ( @ )  is (E + 0, p + 00) 

1 
E(p)- -e -*2x:  exp 

where x +  denotes the zero of the potential. In the derivation of (10) the following 
trick was used: 

1 1 1 x *  

= I x- ( [2 (v ( r )  +E)]”’ - (r’ + 2E)”’ + (r’ + 2E)”’) dl 
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where x+, x -  are the turning points of the orbit tending on the basis of equation (7) 
to the zeros of the potential (in the limit E + 0). 

As can be easily shown, the following relations are valid 

aAc/ap = -(l/g)E@), aE/ap = -E, (12) 

where equations (7), (9) and (10) have been used (or equivalently (2) and (10)). Thus, 
taking into account (10) and (12), we have 

(13) 

We can now calculate the second derivative from equation (6). With the help of 

A, = A(m)/g + (l/g)E(P) 

where A(m) = 2 I,”+ (20(r))~/’ dr. 

(13) and (10) we find 

aA, 1 aE(p) 1 aE ap 
ado)  g ado) g a@ ado)’ 

a m  adp) - g ap2 adp) a d o )  g ap a d o )  a@)’ 

-=--=--- 

a2A, 1 a2E ap ap 1 aE a2p +- - 

but 

So to leading order we obtain 

a2A, aE 1 1 
(15) -_  

ado)  - ap [~(u (x ’ )  + E)I’/’ [ ~ ( v ( x )  + E)I‘ /~ 

where equations (8) and (12) have been used. Finally the coefficient E k  is given by 
the formula 

valid in the case A’ = g and where the sum is taken over the non-trivial zeros of the 
potential. 

When g = A the derivation is slightly different. The classical action has the form 
(see equation (2)) 

and in the limit p + 00 we obtain 

The final formula for the coefficient EOk is 
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where the cut was assumed along the whole imaginary g axis for (Re A ( m )  C 0) or 
along the whole real g axis (Re A(m)  > 0). 

We should mention one weakness of the method which appears when zeros of 
the potential are degenerate real minima. Usually it is the point at which the potential 
changes its symmetry. In general the potential is given by 

u(1)  = n ( 1  -xi)* 
i = l  

In the neighbourhood of the zero x+ we have 

u ( r )  = c ( r  - x + ) ~ ,  r + x+, (20) 

where c is a certain well defined constant and where a 3 2  if x+ is the degenerate 
minimum. On the other hand, when we calculate the energy E(m) from (10) we have 
to integrate the function 

where f ( r )  is a certain well defined function. Taking for example a =2 ,  the first 
component in (21) has at r = x+ the same kind of singularity as at r = 0, which is not 
cancelled by the second component. Thus the exponent in (10) is infinite. Contrary 
to the assumption E-0 for p-00 which led to ( lo) ,  E does not vanish. This 
corresponds to the fact that there do not exist periodic zero-energy solutions in this 
limit and we are forced to apply another approach (see Zinn-Justin 1981a, Harrington 
1978). We illustrate these remarks on a simple example introduced by BrCzin et a1 
(1977); namely, let us consider the potential 

(22) 1 2  3 1 4  o ( r ) = q r  - y r  + z r  . 
This potential is symmetric with respect to r = *$ for y = *l. The behaviour of the 
potential around the zero x+ = y - ( y 2 -  1)1’2 may be characterised by the index a(y), 

lo (r ) l=  cl(r  -x+)IP(”). (23) 
We see that 

so at the point of the symmetry change of the potential IyI = 1 the value of the index 
a increases discontinuously. Note that BrCzin et a1 (1977) have shown that the critical 
value IyI = 1 characterises the transition point from the Borel summable to the Borel 
non-summable series for the ground state energy. 

The integral in (10) is given by (BrCzin et af (1977)) 

and is really divergent at the critical point IyI = 1. 

Thanks are due to helpful discussions with Professor W Biem, Professor H Bolterauer 
and M Opper. 
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